Why does OneCGIAR need Integrated Systems Research?
Holger Meinke, Chair of ISDC
A short story: Using science to facilitate a policy/industry dialogue

- In the late 1980s **peanut growers** in Northern Australia wanted scientific backing to gain Govt support, claiming exceptional climate conditions.
- **Government** wanted to know if such support was justified.
- Our analysis of climate data that coincided with the industries establishment and expansion confirmed industry’s claim for exceptional circumstances.
- However...

www.cas.cgiar.org/isdc
• ... using 100 years of climate data, a different picture emerged.
• The period of the industry’s establishment and expansion coincided with more reliable summer rains and drier conditions during harvest.
• Based on this insight, peanut growers did not get the Government support they were seeking.
• Instead, we started working with government and industry and devised climate-aware management strategies.
• This included better adapted planting dates, changes in harvesting techniques and on-farm drying facilities.
Question

What do you think was the single, most-important factor leading to management and policy changes?
Levels of technologies and their key characteristics for Matching Scientific Knowledge with Nature of the Problem

<table>
<thead>
<tr>
<th>Level</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Level I | Vaccine to prevent COVID
Smart irrigation technologies to save water |
| | **Disciplinary**
Control |
| Level II | COVID vaccine distribution and roll-out within countries
Water saved used for private rather than public good (e.g. Murray Darling Basin, Australia) |
| | **Interdisciplinary**
Adaptive |
| Level III | A fair & effective global health system, i.e. global sharing of vaccines
Global water governance that fosters collaboration and preserves resources |
| | **Transdisciplinary**
Consensus seeking |
Levels of technologies and their key characteristics

for Matching Scientific Knowledge with Nature of the Problem

<table>
<thead>
<tr>
<th>Level</th>
<th>Examples</th>
<th>Characteristics</th>
<th>Foreseeability</th>
<th>Scale</th>
</tr>
</thead>
</table>
| **Level I** | Vaccine to prevent COVID
Smart irrigation technologies to save water

Disciplinary Control | Well-defined social goals
Focus entirely on line-of-sight impact
Knowledge embedded within the technology | | |
| **Level II** | COVID vaccine distribution and roll-out within countries
Water saved used for private rather than public good (e.g. Murray Darling Basin, Australia)

Interdisciplinary Adaptive | Contested and often competing social goals
Focus mainly on the process of governing the interactions arising from technologies and innovations
Knowledge intensive technologies | | |
| **Level III** | A fair & effective global health system, i.e. global sharing of vaccines
Global water governance that fosters collaboration and preserves resources

Transdisciplinary Consensus seeking | Emergent behaviours difficult to perceive; very hard to understand interactions
Focus hasn’t emerged yet as there are no agreed upon, universally valid goals | | |
Levels of technologies and their key characteristics for Matching Scientific Knowledge with Nature of the Problem

<table>
<thead>
<tr>
<th>Level</th>
<th>Examples</th>
<th>Characteristics</th>
<th>Foreseeability</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>Vaccine to prevent COVID
 Smart irrigation technologies to save water
 Disciplinary Control</td>
<td>Well-defined social goals
 Focus entirely on line-of-sight impact
 Knowledge embedded within the technology</td>
<td>Predictable impacts
 Quantifiable</td>
<td></td>
</tr>
<tr>
<td>Level II</td>
<td>COVID vaccine distribution and roll-out within countries
 Water saved used for private rather than public good (e.g. Murray Darling Basin, Australia)
 Interdisciplinary Adaptive</td>
<td>Contested and often competing social goals
 Focus mainly on the process of governing the interactions arising from technologies and innovations
 Knowledge intensive technologies</td>
<td>Internal system behaviour very hard to predict; emergent properties and unforeseen consequences broad trajectories are somewhat foreseeable and quantifiable</td>
<td></td>
</tr>
<tr>
<td>Level III</td>
<td>A fair & effective global health system, i.e. global sharing of vaccines
 Global water governance that fosters collaboration and preserves resources
 Transdisciplinary Consensus seeking</td>
<td>Emergent behaviours difficult to perceive; very hard to understand interactions
 Focus hasn’t emerged yet as there are no agreed upon, universally valid goals</td>
<td>Non-predictable evolution with some foreseeable consequences defying quantification
 Impossible to manage & too difficult to perceive, often leading to disbelief and denial</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Examples</td>
<td>Characteristics</td>
<td>Foreseeability</td>
<td>Scale</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| Level I | Vaccine to prevent COVID
Smart irrigation technologies to save water
Disciplinary Control | Well-defined social goals
Focus entirely on line-of-sight impact
Knowledge embedded within the technology | Predictable impacts
Quantifiable | Shop-floor level
clear cause-effect relations |
| Level II | COVID vaccine distribution and roll-out within countries
Water saved used for private rather than public good (e.g. Murray Darling Basin, Australia)
Interdisciplinary Adaptive | Contested and often competing social goals
Focus mainly on the process of governing the interactions arising from technologies and innovations
Knowledge intensive technologies | Internal system behaviour very hard to predict; emergent properties and unforeseen consequences broad trajectories are somewhat foreseeable and quantifiable | Technologies as networked social/cultural phenomena |
| Level III | A fair & effective global health system, i.e. global sharing of vaccines
Global water governance that fosters collaboration and preserves resources
Transdisciplinary Consensus seeking | Emergent behaviours difficult to perceive; very hard to understand interactions
Focus hasn’t emerged yet as there are no agreed upon, universally valid goals | Non-predictable evolution with some foreseeable consequences defying quantification
Impossible to manage & too difficult to perceive, often leading to disbelief and denial | Complex, global system where human, built and natural elements interact |
ISR can win you the Noble Prize

... The quality of scientific leadership is certainly a vital factor in the success of any production campaign...

... institutions have the moral obligation to serve agriculture and society also; and to discharge that obligation honorably, they must try to help educate scientists and scientific leaders whose primary motivation is to serve humanity ...

... Where are the leaders who have the necessary scientific competence, the vision, the common sense, the social consciousness, the qualities of leadership, and the persistent determination to convert the potential benefactions into real benefactions for mankind in general and for the hungry in particular? There are not enough of them now ...
<table>
<thead>
<tr>
<th>Issue</th>
<th>Donor</th>
<th>Investor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for funding</td>
<td>Have you demonstrated the need for your services?</td>
<td>How will funding your research improve the situation?</td>
</tr>
<tr>
<td>Approach to the Problem</td>
<td>Does your approach to addressing the problem fit within our giving guidelines? Is the problem you are trying to solve familiar to us?</td>
<td>Does your approach to addressing the problem make sense (i.e. ToC)? Is it logically cohesive?</td>
</tr>
<tr>
<td>Funding Level</td>
<td>Have we sufficiently spread our available funding across issues and organizations addressing the problem?</td>
<td>Is this the right amount of money for your research to bring about real change?</td>
</tr>
<tr>
<td>Delivering Results</td>
<td>What activities did you undertake to address the need?</td>
<td>What outcomes did you deliver, and how do they improve the lives (alleviate the problems) of your primary customers?</td>
</tr>
<tr>
<td>Measuring Success</td>
<td>Have you completed your report according to our guidelines?</td>
<td>How will you measure and communicate impact to me?</td>
</tr>
</tbody>
</table>
Some key characteristics of effective ISR

- Answer precise questions quantitatively and vague questions with a convincing narrative and then bridge the gap between them.
- Systems serve multiple purposes and involve natural, social and technological components.
- In the absence of a control group, use a model for scenario analysis and hypothesis testing.
- Stop analysing the problem (it paralyses policy) and start articulating the solutions (make the work policy-relevant).
- The more intractable the system, the more likely that solutions need to be found in the policy arena rather than on-farm or in the business.
- For impact to occur, innovations must be scalable and scaled.
- Proposed systems changes (‘innovations’) must consider trade-offs.
- ISR is the catalyst for innovations and can help bridging the different levels of technologies.

The ultimate answer to life, the universe and everything is ... 42!

Douglas Adams
What do you think was the single, most-important factor leading to management and policy changes?

Answer

The objective provision of a model-based situation analysis that was credible and accepted as legitimate by industry and Government.

This enabled farmers, policy makers and scientists working together to implement transformational changes.