Solar-powered Irrigation: Global Status

Solar pumps offer annually 1,400 – 2,200 peak-hours of reliable and affordable energy for irrigation; bulk of the early investments are in South Asia, but tremendous potential worldwide.

Source: IRENA Off-grid RE Statistics 2020
Four Key Transformation Trajectories
1. Sustainable Irrigation Expansion

- Improved ‘water control’
- Higher land and labour productivity
- Higher gross and net returns
- Improved food and nutritional security
- Improved climate resilience
2. Affordable and Clean Irrigation Access

- Reduced pollution, carbon footprint
- Significant reduction in pumping costs
- Higher productivity and incomes
- Improved climate resilience
3. Solar Power as Remunerative Crop (SPaRC)

- Reduced carbon footprint of irrigation
- Reduction in perverse ‘farm power subsidies’
- Incentivising efficient energy and water use
- Additional, counter-climatic income source
- Instrument for ‘Groundwater Governance’
4. (Additional) PULSE Applications

- All SIPS have in-built energy surplus
- SIPS can service multiple energy needs
- Opportunity greater in off-grid contexts

Additional PULSE applications enhance asset utilization and improve economic viability

https://www.lightingglobal.org/resource/pulse-market-opportunity/
Key Messages

WLE and IWMI’s work in Asia and Africa suggests that:

- Solar pumps more than ‘clean energy’

- SIPs will transform global food systems by:
 - Enabling shift to irrigated agriculture
 - Making irrigation affordable and equitable
 - Enhancing climate resilience
 - Fixing perverse incentives
 - …while reducing carbon footprint

- Focus needed on: smart business models; financing and technology transfer
Thank You...