Participatory Screening and Evaluation of Agricultural and Natural Resource Management Technologies

While there are a number of well-documented methods for screening and evaluating agricultural and natural resource technologies, there is not an approach tailored to the specific challenges of agricultural water management (AWM). Such an approach could greatly increase the percentage of AWM initiatives that succeed, while enhancing benefits and reducing associated negative externalities.

To fill this gap, the AgWater Solutions Project is developing and testing an approach known as Participatory Rapid Opportunities and Constraints Analysis (PROCA). PROCA provides a systematic analysis of different types of innovations (technology, policy, community empowerment) in order to identify solutions for improving agricultural water management and ultimately smallholder livelihoods.

Donors, ministries, investors, and NGOs can use PROCA to

- design and refine AWM investments or projects, and
- monitor and evaluate ongoing projects to improve implementation and assess the impacts of completed projects.
Putting PROCA into action

PROCA has three basic steps (see table). The steps are not necessarily linear and not all may be needed to identify appropriate innovations. They depend on whether the innovations under consideration are software (e.g., policy changes) or hardware (e.g., small-scale irrigation technologies) and how well-tested they are. In addition, the steps can be adjusted to suit ex ante or post evaluation.

Situation analysis and initial screening

This step starts with making an inventory of existing initiatives, ideas, and projects: Who is doing what? What approaches work and where? What are the factors that influence success or failure? The idea is to cast the net wide and look not only at technologies but also policy and management innovations.

Next, the resulting long list of possible AWM solutions must be screened using four key criteria (see Table) to identify those that deserve a closer look. In the AgWater Solutions Project, an important element in this process is the national consultation meeting where stakeholders make a first selection of promising solutions for their country. This national scoring and priority-setting exercise not only facilitates rapid identification of the most appropriate AWM solutions but also improves linkages among stakeholders and builds a spirit of collaboration.

Analysis of outscaling impacts

Although it is important to consider outscaling impacts from the beginning of the process, a more in-depth impact assessment is required before promoting the spread of an innovation. Step 3 is to evaluate the likely positive and negative impacts and externalities of outscaling the promising AWM solutions identified in Step 2, looking at the potential to positively or negatively affect water resources, the wider economy, and the environment.

The three interactive steps of PROCA.

<table>
<thead>
<tr>
<th>Step</th>
<th>Activity</th>
<th>Methods</th>
<th>Key evaluation criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Situation analysis and initial screening</td>
<td>Identification and prioritization of possible AWM solutions</td>
<td>Literature reviews, secondary data collection and analyses, brainstorming, surveys, workshops, gender mapping, priority setting using scoring and ranking techniques</td>
<td>Impact potential, gender-equity, scale potential, implementation pathway (ex-ante)</td>
</tr>
<tr>
<td>Step 2: In-depth case studies</td>
<td>Further evaluation of AWM solutions that passed step 1</td>
<td>Field research, modeling</td>
<td>Access, economics, social and institutional dynamics, backward linkages, forward linkages, resource sustainability, externalities</td>
</tr>
<tr>
<td>Step 3: Analysis of outscaling impacts</td>
<td>Analysis of sustainability and externalities at larger scales</td>
<td>Hydro-economic modeling, partial equilibrium analysis (e.g., cost–benefit analysis, economic surplus analysis), GIS/RS applications</td>
<td>Sustainability, externalities</td>
</tr>
</tbody>
</table>
Advantages of PROCA

It’s participatory – PROCA involves a variety of people at different stages and levels: farmers, policymakers, donors, researchers, and key informants. Thus, it takes advantage of local knowledge and ensures that solutions are tailored to the context and the needs of end users.

It’s rapid – PROCA relies on participation of stakeholders to identify tentative solutions and then screen and prioritize the most promising ones for more in-depth analysis. This phased approach saves time and resources and demonstrates results up front, which helps keep stakeholders engaged.

It’s multidisciplinary – To provide a more complete picture, the conceptual and theoretical basis of PROCA draws from the fields of hydrology, water resource management, sociology/social-anthropology, economics, management science, and irrigation engineering.

It’s scalable – PROCA can be used at a variety of scales—farm, community, or watershed—and can be used to assess the potential for further outscaling.

It’s adaptable – PROCA gives the user the freedom to use a variety of tools and methods as long as they provide robust answers to the evaluation criteria defined in the protocol. The table provides an overview of some compatible tools and methods. By outlining a common but adaptable approach, PROCA facilitates comparison of AWM interventions across types, sectors, and countries.

Project outputs

- A proven methodology to assess AWM interventions.
- A portfolio of promising interventions by country, selection criteria, and circumstances under which they succeed or fail. These results will be synthesized in a series of intervention briefs.

The four hurdles: Criteria for identifying promising solutions

Possible solutions are evaluated and compared according to four key criteria. These criteria can be thought of as hurdles that the possible solution must pass in order to qualify for the next step. The four criteria are

- **Contribution to smallholders’ livelihoods.** It increases smallholder income, food security and household water availability and decreases drudgery, income fluctuation and risk.

- **Gender and equity considerations.** It benefits women as well as men, does not place an undue burden on women or children, and does not increase income disparity in a community.

- **Out-scalability.** It has the potential to benefit a relatively large number of people over a wide geographic area.

- **Ease of implementation.** It has an implementation and dissemination pathway that is sustainable and cost-effective and an identifiable champion to carry it out.

Source

Opportunities – Constraints = Successful Uptake of Innovations by AgWater Solutions. Project Overview Brief Series. www.awm-solutions.imwi.org